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Abstract. Test particles interact with a medium by means of a bimolecular reversible chemical reaction.
Two species are assumed to be much more numerous so that they are distributed according to fixed
distributions: Maxwellians and Dirac’s deltas. Equilibrium and its stability are investigated in the first
case. For the second case, a system is constructed, in view of an approximate solution.

PACS. 05.20.Dd Kinetic theory – 51.10.+y Kinetic and transport theory of gases – 82.20.-w Chemical
kinetics and dynamics

1 Introduction

Among the elementary processes of collision between ions
and molecules, the dissociative attachment of an electron
to a molecule

P− + AB � A− + PB, (1)

plays a role in the physics of weakly ionized gases [1,2].
However, a full kinetic study is laking. In particular, when
the electric field is not vanishing, equilibrium solutions are
not available for the distribution functions.

In the present paper we shall assume that particles 2
and 4 are much more numerous and can be treated as a
neutral background, while particles 1 and 3 have the same
(negative) charge e and are subjected to a constant elec-
tric field E. (Hereinafter, particles P−, AB, A−, and PB
will be labeled by the subscripts 1, 2, 3, 4. Each of these
particles is endowed with mass mi and internal energy of
chemical bond Ei.)

First of all we recall the full Boltzmann equations for
particles 1 and 3. The exact form of the collision inte-
grals is shown. The weak form of the kinetic equations is
constructed, in order to investigate conservation laws and
equilibrium. Two cases are considered:
(1) particles 2 and 4 are distributed according to

Maxwellians without drift velocity. Under this as-
sumption, equilibrium and its stability are investigated
when E = 0. Firstly we show how to construct the
equilibrium solutions. Secondly, we show the existence
of a Lyapunov functional for the present problem. A
physical counterpart of these mathematical results is
discussed.
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(2) B is heavier than P− and A−. In the limit mB → ∞
particles 2 and 4 can be considered to be distributed
according to Dirac’s deltas [3]. As a consequence,
the Boltzmann equations are modified. Moreover, if
the electric field is small, we introduce a first order
spherical harmonic expansion for the distribution func-
tions of particles 1 and 3. The result is a system of
differential-finite difference equations for the problem.
By taking advantage of the smallness of E, a first order
solution can be constructed for the current functions.

2 Boltzmann equations for particles 1 and 3

The nonlinear integrodifferential Boltzmann equations
governing the evolution of the distribution function for
the reacting particles 1 and 3 reads as follows [4]:

(
∂

∂t
+ v · ∂

∂x
+ e

E

mi
· ∂

∂v

)
fi = Ji[f¯

] + Qi[f¯
], (2)

where Ji[f¯
] and Qi[f¯

] are the chemical and elastic collision
integrals with f

¯
≡ (f1, f2, f3, f4).

The chemical collision integrals are given by

Ji[f¯
] =

∫
Ki[f¯

] dwdn′, (3)

where, for i = 1, we have

K1[f¯
] = θ(g2 − η12) ν34

12(g, n · n′)

×
[(

m1 m2

m3 m4

)3

f3(v34
12) f4(w34

12) − f1(v)f2(w)

]
, (4)
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with θ(x) the Heaviside step function whereas, for i = 3,
we have

K3[f¯
] = ν12

34(g, n · n′)

×
[(

m3 m4

m1 m2

)3

f1(v12
34) f2(w12

34) − f3(v) f4(w)

]
, (5)

where

v34
12 =

1
M (m1 v + m2 w + m4 g34

12 n′), (6)

w34
12 =

1
M (m1 v + m2 w − m3 g34

12 n′), (7)

v12
34 =

1
M (m3 v + m4 w + m2 g12

34 n′), (8)

w12
34 =

1
M (m3 v + m4 w − m1 g12

34 n′), (9)

with M = m1 + m2 = m3 + m4. In equations (4) and (5)
we have introduced the differential collision frequencies
of the forward and backward reaction ν34

12 (g, n · n′) and
ν12
34 (g, n · n′), where g = |v − w| whilst n and n′ are

the unit vectors of the relative velocities before and af-
ter collision, respectively. We observe that the following
microreversibility condition holds

(m1 m2)2 g ν34
12 (g, n · n′) =

(m3 m4)2 g34
12 ν12

34(g, n · n′) θ(g2 − η34), (10)

where

gij
kl =

√
mk ml

mi mj
(g2 − ηij), (11)

with ηij =2M∆E/mimj and ∆E = E3+E4−E1−E2 > 0
is the molecular heat of reaction.

Differently, the elastic collision integrals are given by

Qi[f¯
] =

∫
Ri[f¯

] dwdn′, (12)

where

Ri[f¯
] =

∑
�=2,4

νi�
i� (g, n · n′)

[
fi(vi�

i�) f�(wi�
i�) − fi(v) f�(w)

]
,

(13)
and

vi�
i� =

1
mi + m�

(mi v + m� w + m� g n′), (14)

wi�
i� =

1
mi + m�

(mi v + m� w − m� g n′). (15)

The weak form of the kinetic equations for i = 1 and 3
is obtained by multiplication times a pair of sufficiently
smooth functions φ1(v) and φ3(v), respectively, integra-

tion over v, and by summing [5]:

∫
∂f1

∂t
φ1(v) dv +

∫
∂f3

∂t
φ3(v) dv =

∫
K1[f¯

]
[
φ1(v) − φ3(v34

12)
]
dv dw dn′

+
1
2

∫
R1[f¯

]
[
φ1(v) − φ1(v12

12)
]
dv dw dn′

+
1
2

∫
R3[f¯

]
[
φ3(v) − φ3(v34

34)
]
dv dw dn′. (16)

Observe that for φ1(v) = φ3(v) = 1 we get dn1/dt +
dn3/dt = 0, with ni =

∫
fi dv, that is the total number of

test particles is conserved.

3 Case (1)

We assume particles 2 and 4 much more numerous, so
that they can be treated as an equilibrium background at
a fixed temperature T [6]:

f� = m3
� exp

[
β
(
µ� − E� − 1

2
m�v

2
)]

, (17)

with � = 2, 4 and µ� fixed.
From the weak form of the Boltzmann equation, by

setting

φ1 = ln
{
f̃1 exp

[
β
(
µ2 − E2 − 1

2
m2 v2

)]}
, (18)

φ3 = ln
{
f̃3 exp

[
β
(
µ4 − E4 − 1

2
m4 v2

)]}
, (19)

where f̃i = fi/m3
i , we obtain

D =
∫

ν34
12 (g, n · n′) (m1 m2)3 ln

f̃3(v34
12) f̃4(w34

12)
f̃1(v) f̃2(w)

× [f̃1(v) f̃2(w) − f̃3(v34
12) f̃4(w34

12)] dv dw dn′

+
1
2

∑
i,�

(mi m�)3
∫

νi�
i�(g, n · n′) ln

f̃i(vi�
i�)f̃�(wi�

i�)
f̃i(v) f̃�(w)

× [f̃i(v) f̃�(w) − f̃i(vi�
i�) f̃�(wi�

i�)] dv dw dn′ ≤ 0, (20)

(i = 1 and 3; � = 2 and 4), where D is the left hand
side of equation (16). Based on these results, by standard
methods of kinetic theory [4], we have

Proposition 1. The equilibrium condition

∂f1

∂t
=

∂f3

∂t
= 0, (21)

is equivalent to

f̃i(vi�
i�) f̃�(wi�

i�) = f̃i(v) f̃�(w), (22)

f̃3(v34
12) f̃4(w34

12) = f̃1(v) f̃2(w), (23)

with i = 1, 3 and � = 2, 4 •
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From the first equation we get

f̃i = exp
[
β

(
µi − Ei − 1

2
mi v2

)]
, (24)

while the second one gives µ1 + µ2 = µ3 + µ4.
In order to investigate the stability of such equilibrium

solution, we introduce the following functional:

L = H − β

∫
f1

(
µ1 − E1 − 1

2
m1 v2

)
dv

−β

∫
f3

(
µ3 − E3 − 1

2
m3 v2

)
dv, (25)

where H =
∫ H dv, H = H1 + H3 and ∂Hi/∂fi = ln f̃i.

Proposition 2. L is a Lyapunov functional for the
present problem •

Proof. First of all, from equations (16) and (20) we verify
that

dL
dt

= D ≤ 0. (26)

Moreover, by introducing the first Taylor expansion of H
around the equilibrium∫

Ĥ dv =
∫ [

H∗+
(

∂H
∂f1

)∗
(f1 − f∗

1 )+
(

∂H
∂f3

)∗
(f3 − f∗

3 )
]
dv

=
∫ [

H∗ + β

(
µ1 − E1 − 1

2
m1 v2

)
(f1 − f∗

1 )

+ β

(
µ3 − E3 − 1

2
m3 v2

)
(f3 − f∗

3 )
]

dv, (27)

where ∗ means “at equilibrium”, from equations (25)
and (27) we obtain

L − L∗ =
∫ (

H−H∗
)

dv

+β

∫ (
µ1 − E1 − 1

2
m1 v2

)
(f1 − f∗

1 ) dv

+β

∫ (
µ3 − E3 − 1

2
m3 v2

)
(f3 − f∗

3 ) dv

=
∫

(H− Ĥ) dv. (28)

Due to the convexity of H we can conclude that L ≥ L∗.
The inequality

dL
dt

≤ 0, (29)

can be interpreted on a physical ground. In fact, by intro-
ducing the entropy S = −H , we get the following thermo-
dynamic inequality:

dS ≥ 1
T

(dE − µ∗
1 dn1 − µ∗

3 dn3) , (30)

where E =
∫

f1 (E1 +m1 v2/2) dv+
∫

f3 (E3 +m3 v2/2) dv
is the total energy density of test particles. With respect
to Clausius inequality, we observe an additional term due
to the fact that the medium of field particles 2 and 4 not
only provides heat to the gas of test particles 1 and 3 but
also modifies its composition.

4 Case (2)

In the limit mB → ∞ we have

m1 m2

m3 m4
→ m1

m3
, (31)

and the following relations hold

g34
12 → v− =

√
m1

m3
v2 − η3,

g12
34 → v+ =

√
m3

m1
v2 + η1, (32)

v34
12 → w + v−n′, v12

34 → w + v+n′, (33)
w34

12 → w, w12
34 → w,

vi�
i� → w + v n′, wi�

i� → w − v n′,

where ηi = 2 ∆E/mi. Moreover we can pose n → Ω,
n′ → Ω′ and g → v.

By taking into account that f�(w) = N� δ(w) for � = 2
and 4, the integrals Ji[f¯

] and Qi[f¯
] read now

J1[f¯
] =

∫
θ(v2 − η1) ν34

12(v, Ω · Ω′)

×
[(

m1

m3

)3

N4 f3(v− Ω′) −N2 f1(v)

]
dΩ, (34)

J3[f¯
] =

∫ (
m1

m3

)2
v+

v
ν34
12 (v+, Ω · Ω′)

×
[(

m3

m1

)2

N2 f1(v+ Ω′) −N4 f3(v)

]
dΩ, (35)

Q1[f¯
] =

∫ [
N2 ν12

12 (v, Ω · Ω′) + N4 ν14
14 (v, Ω · Ω′)

]

×
[
f1(v Ω′) − f1(v)

]
dΩ, (36)

Q3[f¯
] =

∫ [
N2 ν32

32 (v, Ω · Ω′) + N4 ν34
34 (v, Ω · Ω′)

]

×
[
f3(v Ω′) − f3(v)

]
dΩ. (37)

Equilibrium and its stability for the present problem are
investigated in [5]. Our purpose here is to construct model
equations suitable for an approximate solution.

As usual in the physics of weakly ionized gases [1], if
both the spatial gradients and the electric field are small
we may resort to a first order spherical harmonic expan-
sion of fi(v Ω):

fi(v Ω) = Ni(v) + Ω · J i(v), (38)

where

Ni(v) =
1

4 π

∫
fi(v Ω) dΩ, (39)

and

J i(v) =
3

4 π

∫
Ω fi(v Ω) dΩ. (40)
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By projecting over 1 and Ω we get, after some manipula-
tions, the following system for the new unknown functions
Fi(ξ) = Ni(v) and Gi(ξ) = J i(v):

∂F1(ξ)
∂t

+
√

ξ

3
∇ · G1(ξ) − e E

m1
· 2
3
√

ξ

∂

∂ξ
[ξ G1(ξ)] =

θ(ξ − η1) ν34
12(0)(ξ)

[(
m1

m3

)3

N4 F3

(
ξ−

) −N2 F1(ξ)

]
,

(41)
∂F3(ξ)

∂t
+

√
ξ

3
∇ · G3(ξ) − e E

m3
· 2
3
√

ξ

∂

∂ ξ
[ξ G3(ξ)] =

(
m1

m3

)2

ν34
12(0)

(
ξ+

) √
ξ+

ξ

×
[(

m3

m1

)3

N2 F1

(
ξ+

) −N4 F3(ξ)

]
, (42)

∂G1(ξ)
∂t

+
√

ξ∇F1(ξ) − 2 e E

m1

√
ξ

∂F1(ξ)
∂ξ

=

θ(ξ − η1)

[
ν34
12(1)(ξ)

(
m1

m3

)3

N4 G3

(
ξ−

)

−N2 G1(ξ) ν34
12(0)(ξ)

]
− γ1(ξ)G1(ξ), (43)

∂G3(ξ)
∂t

+
√

ξ ∇F3(ξ) − 2 e E

m3

√
ξ
∂F3(ξ)

∂ξ
=

(
m1

m3

)2
√

ξ+

ξ

[
ν34
12(1)

(
ξ+

) (
m3

m1

)3

N2 G1

(
ξ+

)

−N4 G3(ξ) ν34
12(0)

(
ξ+

)] − γ3(ξ)G3(ξ), (44)

where we have posed ξ± = (v±)2 and

γi(ξ) = N2 νi2
i2(t)(ξ) + N4 νi4

i4(t)(ξ), (45)

being νlm
ij(t)(ξ) = νlm

ij(0)(ξ) − νlm
ij(1)(ξ) and

νlm
ij(k)(ξ) = 2 π

∫ +1

−1

µk νlm
ij (ξ, µ) dµ, (46)

with k = 1 and 2.
Consider now the stationary space-homogeneous equa-

tions We observe that for E = 0 the following equilibrium
solutions hold:

Fi = Ci exp
(
− mi ξ

2 kB T

)
, (47)

where
C3 N4

C1 N2
=

(
m3

m1

)3

exp
(
− ∆E

kB T

)
, (48)

(mass action law).
Finally, we observe that the electric field must be a

small quantity, |E| = ε, so that we can expand Fi and Gi

as follows

Fi = F
(0)
i + εF

(1)
i + . . . , Gi = ε G

(1)
i + . . . . (49)

Fig. 1. Plot of the current function |G(1)
1 (ξ)| (full line) for the

charge particles P− and |G(1)
3 (ξ)| (dotted line) for the charge

particles A−, in arbitrary units.

Since F
(0)
i are already known, by solving equations (41)

and (42), we can obtain the expression of G
(1)
i , in the case

of isotropic reaction collision frequency ν34
12(0):

G
(1)
1 = −eEC1

kBT

√
ξ exp(−m1ξ/2kBT )

θ(ξ − η1)N2ν34
12(0)(ξ) + γ1(ξ)

, (50)

G
(1)
3 = −eEC3

kB T

ξ exp(−m3ξ/2kBT )
N4(m1/m3)2ν34

12(0) (ξ+)
√

ξ+ +
√

ξγ3(ξ)
,

(51)

where G
(1)
i = G

(1)
i · e, with e the unit vector of E.

In Figure 1 we depict, in arbitrary unity, the plots of
|G(1)

1 (ξ)| (full line) and |G(1)
3 (ξ)| (dotted line). Since the

forward equation has a threshold for ξ = η1, the collision
frequency of particles 1 suddenly increases, and a discon-
tinuity in the relevant plot of |G(1)

1 (ξ)| occurs.

5 Conclusions

Two linear Boltzmann models have been constructed for
test particles reacting with a medium of numerous field
particles. In the first case the field particles are distributed
according Maxwellians with vanishing drift velocity. The-
orems on equilibrium and its stability are given, as well as
their connection with thermodynamics. In the second case
we consider particles B heavier than particles P− and A−.
By means of first order spherical harmonic expansion, four
equations can be constructed, suitable for an approximate
solution.
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